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Strength Design Approach

The analysis and design of a structural member may be regarded as the process of selecting the proper
materials and determining the member dimensions such that the design strength is equal or greater than the
required strength. The required strength is determined by multiplying the actual applied loads, the dead
load, the assumed live load, and other loads, such as wind, seismic, earth pressure, fluid pressure, snow, and
rain loads, by load factors. These loads develop external forces such as bending moments, shear, torsion, or
axial forces, depending on how these loads are applied to the structure.

In proportioning reinforced concrete structural members, three main items can be investigated:
1 .The safety of the structure, which is maintained by providing adequate internal design strength.

2 .Deflection of the structural member under service loads. The maximum value of deflection must be
limited and is usually specified as a factor of the span, to preserve the appearance of the structure.

3 .Control of cracking conditions under service loads. Visible cracks spoil the appearance of the structure
and permit humidity to penetrate the concrete, causing corrosion of steel and consequently weakening the
reinforced concrete member. The ACI Code implicitly limits crack widths to 0.016 in. (0.40 mm) for
interior members and 0.013 in. (0.33 mm) for exterior members. Control of cracking is achieved by
adopting and limiting the spacing of the tension bar.

It is worth mentioning that the strength design approach was first permitted in the United States in 1956 and
in Britain in 1957. The latest ACI Code emphasizes the strength concept based ified strain limits on

steel and concrete that develop tension-controlled, compression controlled, or transii
-
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ASSUMPTIONS

Reinforced concrete sections are heterogeneous (nonhomogeneous), because they are made of two different
materials, concrete and steel. Therefore, proportioning structural members by strength design approach is
based on the following assumptions:

l.

Strain in concrete 1s the same as in reinforcing bars at the same level, provided that the bond between the
steel and concrete is adequate.

Strain in concrete is linearly proportional to the distance from the neutral axis.

The modulus of elasticity of all grades of steel is taken as Es = (200,000MPa or N/mm?). The stress in
the elastic range is equal to the strain multiplied by Es.

Plane cross sections continue to be plane after bending.
Tensile strength of concrete is neglected because (a) concrete’s tensile strength is about 10% of its
compressive strength, (b) cracked concrete is assumed to be not effective, and (c) before cracking, the
entire concrete section is effective in resisting the external moment.

The method of elastic analysis, assuming an ideal behavior at all levels of stress, is not valid. At high
stresses, non-elastic behavior is assumed, which is in close agreement with the actual behavior of
concrete and steel.

At failure the maximum strain at the extreme compression fibers is assume
Code provision. = -
For design strength, the shape of the compressive concrefe stress distribution
rectangular, parabolic, or trapezoidal. In this text, a recta&hape will be assumed (ACI Code,

Section 22.2).

al to 0.003 by the ACI
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TYPES OF FLEXURAL FAILURE AND STRAIN LIMITS

Three types of flexural failure of a structural member can be expected depending on the percentage of
steel used as explained before.

It can be assumed that concrete fails in compression when the concrete strain reaches 0.003.A range of
0.0025 to 0.004 has been obtained from tests and the ACI Code, Section 22.2.2.1, assumes a strain of
0.003.

In beams designed as tension-controlled sections, steel yields before the crushing of concrete. Cracks
widen extensively, giving warning before the concrete crushes and the structure collapses. The ACI Code
adopts this type of design. In beams designed as balanced or compression-controlled sections, the
concrete fails suddenly, and the beam collapses immediately without warning. The ACI Code does not
allow this type of design.

Strain Limits for Tension and Tension-Controlled Sections

The design provisions for both reinforced and pre-stressed concrete members are based on the concept of
tension or compression-controlled sections, ACI Code, Section 21.2. Both are defined in terms of net
tensile strain (NTS), (&, ), in the extreme tension steel at nominal strength, exclusive of pre-stress strain.
Moreover, two other conditions may develop: (1) the balanced strain condition and (2) the transition
region condition. These four conditions are defined as follows:
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Compression-controlled sections are those sections in which the net tensile strain, NTS, in the extreme
tension steel at nominal strength is equal to or less than the compression-controlled strain limit at the
time when concrete in compression reaches its assumed strain limit of 0.003,(ec = 0.003). For grade 60
steel, (fy = 420 MPa), the compression-controlled strain limit may be taken as a net strain of 0.002, Fig.

a. This case occurs mainly in columns subjected to axial forces and moments.

Tension-controlled sections are those sections in which the NTS, &t, is equal to or greater than 0.005 just

as the concrete in the compression reaches its assumed strain limit of 0.003, Fig. c.

Sections in which the NTS in the extreme tension steel lies between the compression controlled strain
limit (0.002 for fy = 420 MPa) and the tension-controlled strain limit of 0.005 constitute the transition

region, Fig. b.

The balanced strain condition develops in the section when the tension steel, with the first yield, reaches

te at the

a strain corresponding to its yield strength, fy or es= fy/Es, just as the maximu
-

extreme compression fibers reaches 0.003, Fig. d. x,
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S Cimel £, < 0.002 0.002 < &, < 0.005 &, > 0.005

Strain limit distribution, ¢, >c, > c5: (@) compression-controlled section,
(b) transition region, and (c) tension-controlled section.

e.= 0.003
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F,
Ey = E..\
b £, = 0.002 (f, = 60 ksi)

d. Balanced strain section (occurs at first yield or at distance d,).
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In addition to the above four conditions, Section 9.3.3.1 of the ACI Code indicates that the net tensile
strain, &t, at nominal strength, within the transition region, shall not be less than 0.004 for reinforced
concrete flexural members without or with an axial load less than 0.10 f'c Ag, where Ag=gross area of the
concrete section.

Note that d, in Fig. above, is the distance from the extreme concrete compression fiber to the extreme
tension steel, while the effective depth, d, equals the distance from the extreme concrete compression
fiber to the centroid of the tension reinforcement. These cases are summarized in Table below:

Table 1  Strain Limits of Figure above 420MP3
Section Candition Concrete Strain Steel Strain Notes (f, = 60ksi]
Compression controlled 0.003 £ < fIE; g, <0.002

Tension controlled 0.003 g,2> 0.005 g; 2> 0.005
Transition region 0.003 JJE, < €,<0.005 0.002 < g, < 0.005
Balanced strain 0.003 g.=LE, g, =0.002
Transition region (flexure) 0.003 0.004< g, < 0.005 0.04 < g, < 0.005

R
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LOAD FACTORS
For the design of structural members, the factored design load is obtained by multiplying the dead load

by a load factor and the specified live load by another load factor. The magnitude of the load factor must
be adequate to limit the probability of sudden failure and to permit an economical structural design. The
choice of a proper load factor or, in general, a proper factor of safety depends mainly on the importance
of the structure (whether a courthouse or a warehouse), the degree of warning needed prior to collapse,
the importance of each structural member (whether a beam or column), the expectation of overload and
the accuracy of calculations.

Based on historical studies of various structures, experience, and the principles of probability, the ACI
Code adopts a load factor of 1.2 for dead loads and 1.6 for live loads. The dead-load factor load.
Moreover, the choice of factors reflects the degree of the economical design as well as the degree of
safety and serviceability of the structure. It is also based on the fact that the performance of the structure
under actual loads must be satisfactorily within specific limits.

If the required strength is denoted by U (ACI Code, Section 5.3.1), and those due to wind and seismic
forces are W and E, respectively, according to the ACI and ASCE 7-10 Codes (American society of civil

Engineering) , the required strength, U, shall be the most critical of the followinN
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1. In the case of dead, live, and wind loads,

U=14D
U=1.2D+ 1.6L
U=12D+ L.OL+1.0W
U=09D+1.0W

U= 1.2 D+ (1.0L+0.5 W)

2. In the Case of Dead Load , Live and seismic load ( earthquake) forces , E

U=1.2 D+ 1.0L+1.0E
U=0.9 D+ 1.0E

3. For load combination due to roof live load , Lr , rain Load ,R, Snow load ,S, in additional to dead ,
live load , wind , and earthquake load:

U=1.2D+ 1.6L+0.5 (Lror S or R)
U=12D+1.6(LrorSorR)+ (1.0 Lor 0.5 W)
U=12D+1.0W+1.0L+0.5(Lror S or R)
U=12D+1E+10L+02S

4. Where fluid load F is present, it shall be included as follows:
U=14(D+F)

U=12D+1.2F + (L or 0.5 W)+ 1.6(Lr or S or R)
U=12D+12F+1.0W+L+0.5(Lror S orR)
U=12D+12F+1.0E+L+0.28S

U=09 (D+F)+1.0E

10



Prof. Dr. Haleem K. Hussain

STRENGTH REDUCTION FACTOR ¢

The nominal strength of a section, say Mn, for flexural members, calculated in accordance
with the requirements of the ACI Code provisions must be multiplied by the strength
reduction factor, ¢, which is always less than 1. The strength reduction factor has several
purposes:

1 .To allow for the probability of understrength sections due to variations in dimensions,
material properties, and inaccuracies in the design equations.

2 .To reflect the importance of the member in the structure.

3 .To reflect the degree of ductility and required reliability under the applied loads
The ACI Code, Table 21.2.1, specifies the following values to be used

-]
L
b =
-

11
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A higher ¢ factor is used for tension-controlled sections than for compression-controlled sections, because
the latter sections have less ductility and they are more sensitive to variations in concrete strength. Also,
spirally reinforced compression members have a ¢value of 0.75 compared to 0.65 for tied compression
members; this variation reflects the greater ductility behavior of spirally reinforced concrete members under
the applied loads. In the ACI Code provisions, the ¢ factor is based on the behavior of the cross section at
nominal strength, (Pn, Mn), defined in terms of the NTS, €t, in the extreme tensile strains, as given below.
For tension-controlled members,p= 0.9. For compression-controlled members, ¢= 0.75 (with spiral

reinforcement) and ¢= 0.65 for other members.

For tension-controlled sections ¢»=0.9
For Compression -controlled sections

a- with Spiral Reinforcement ¢=0.75

b- other Reinforced member ¢=0.65
For Plain Concrete ¢=0.60
For Shear and Torsion ¢=10.75
For Bearing on Concrete ¢=0.65
For Strut and Tie model ¢=10.75

12
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A higher ¢ factor is used for tension-controlled sections than for compression-controlled sections, because
the latter sections have less ductility and they are more sensitive to variations in concrete strength. Also,
spirally reinforced compression members have a ¢ value of 0.75 compared to 0.65 for tied compression
members; this variation reflects the greater ductility behavior of spirally reinforced concrete members
under the applied loads. In the ACI Code provisions, the ¢ factor is based on the behavior of the cross
section at nominal strength, (Pn, Mn), defined in terms of the NTS, &t, in the extreme tensile strains, as
given in Table 1. For tension-controlled members,¢p= 0.9. For compression-controlled members, ¢= 0.75
(with spiral reinforcement) and ¢= 0.65 for other members.

For the transition region, ¢gmay be determined by linear interpolation between 0.65 (or 0.75) and 0.9.
Figure 3.6a shows the variation of ¢for grade 60 steel ( 420 Mpa) . The linear equations are as follows:

0= 0.75+ (£,-0.002) (50)

0= 0.65+(,~0.002) (2§—0)

For Spiral Members
For Other Members

Alternatively @ may be determined in the transition region , as a function of ( ¢/dt) for grade 60 ( fy

420 Mpa) steel as follows:

L S :

0= 0.75+0.15 (C/dt ; ceesrreveesees HAE SplEaI Members:
- . >

@=0.65+ 0.15 (C/dt Z) For M/le!mbers

13
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EQUIVALENT COMPRESSIVE STRESS DISTRIBUTION

The distribution of compressive concrete stresses at failure may be assumed to be a rectangle, trapezoid,
parabola, or any other shape that is in good agreement with test results.

When a beam is about to fail, the steel will yield first if the section is under reinforced, and in this case the
steel is equal to the yield stress. If the section is over reinforced, concrete crushes first and the strain is
assumed to be equal to 0.003, which agrees with many tests of beams and columns. A compressive force, C,
develops in the compression zone and a tension force, T, develops in the tension zone at the level of the
steel bars. The position of force T is known because its line of application coincides with the center of
gravity of the steel bars. The position of compressive force C is not known unless the compressive volume
1s known and its center of gravity is located. If that is done, the moment arm, which is the vertical distance
between C and T, will consequently be known.

In Fig. above, if concrete fails, ¢, = 0.003, and if steel yields, as in the case of a balanced section, fs = fy.
The compression force C is represented by the volume of the stress block, which has the non-uniform shape
of stress over the rectangular hatched area of b*c. This volume may be considered equal to C =b ¢ («, f'c ),
where a, f'c is an assumed average stress of the non-uniform stress block.

The position of compression force C is at a distance z from the top fibers, which can be considered as a
fraction of the distance ¢ (the distance from the top fibers to the neutral axis), can be assumed to be
equal to @, C, where a, <1. The values of @l and a2 have been estimated from maa ' ues

are as follows: “'- 5

16
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a, = 0.72 for f'c < (28MPa); it decreases linearly by 0.04 for every (7MPa) greater than (28 MPa)
a;, =072 — 0.04 X (f'c—28)/7

a, = 0.425 for f'c < (28MPa); it decreases linearly by 0.025 for every (7MPa) greater than (28MPa)
a, = 0.425 — 0.025 X ( f'c —28)/7

The decrease in the value of a1 and a2 is related to the fact that high-strength concretes show more
brittleness than low-strength concretes.

To derive a simple rational approach for calculations of the internal forces of a section, the ACI Code
adopted an equivalent rectangular concrete stress distribution, which was first proposed by C.S. Whitney
and checked by Mattock and others. A concrete stress of 0.85 f'c 1s assumed to be uniformly distributed
over an equivalent compression zone bounded by the edges of the cross section and a line parallel to the
neutral axis at a distance (a=f,c) from the fiber of maximum compressive strain, where c is the distance
between the top of the compressive section and the neutral axis. The fraction £, is 0.85 for concrete
strengths f'c < (28MPa) and is reduced linearly at a rate of 0.05 for each (7MPa) of stress greater than

(28MPa) with a minimum value of 0.65.
- ‘
MS

17
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B, =0.85 — 0.05 ><< .
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Figure 310 Forces in a nonrectangular zection. 19
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SINGLY REINFORCED RECTANGULAR SECTION IN BENDING

The balanced condition is achieved when steel yields at the same time as the concrete fails, and that failure
usually happens suddenly. This implies that the yield strain in the steel is reached (ey =fy/Es) and that the
concrete has reached its maximum strain of 0.003.

The percentage of reinforcement used to produce a balanced condition is called the balanced steel ratio, pb.
This value is equal to the area of steel, As, divided by the effective cross section bd.

i ASbalanced
Pp = bd

Where:
b = width of compression face of member
d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement
Two basic equations for the analysis and design of structural members are the two equations of equilibrium
that are valid for any load and any section:
1 .The compression force should be equal to the tension force; otherwise, a section will have linear
displacement plus rotation:
C=T

2 .The internal nominal bending moment, Mn, is equal to either the compressive force, C, multiplied by its

arm or the tension force, T, multiplied by the same arm: - -

M, =Cd —-z) =Td= z)
(Mu = ¢Mn after applying a reduction factor ¢) g{

The use of these equations can be explained by considering the ca a rectangular section with tension
reinforcement. The section may be balanced, under reinforced, or over reinforced, depending on the
percentage of steel reinforcement used. 20
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f

(a) (b) {c)
£.=0.003 £.=0.003 £.=0.003
Co Ca /
CI 3 R
_
d, =%
L ] - L L
- - L] L ]
£, < Ty Ty < g,< 0.005 e. > 0.005
b 'E_'s E-'b e
For f, = 60 ksi £, < 0.002 0.002 < &,< 0.005 £ = 0.005

Strain limit distribution, c¢; > ¢, > c5: (@) compression-controlled section,
(b) transition region, and (c) tension-controlled section.

e, = 0.003
Ch
;ﬁ
h d d,
A.\
L L] - - .
L ] L L] L
F,
E'; = E‘_'
b £, = 0.002 (f, = 60 ksi)

d. Balanced strain section (occurs at first yield or at distance d,).
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Balanced Section

Let us consider the case of a balanced section, which implies that at maximum load the strain in concrete
equals 0.003 and that of steel equals the first yield stress at distance dt divided by the modulus of elasticity
of steel, fy/Es. This case is explained by the following steps.

Step 1. From the strain diagram

& 0.003 C, 0.003
= or =
dt —Cp Cb dt _ Cb )Ec';z

From triangular relationships (where C, 1s ¢ for a balanced section) and by asdding the numerator to the
denominator,

0.003 &

c, 0.003 I i e
F /

t 0.003 +%¥ = /
S o /
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If Es = 200000 Mpa

Then :
C, = 000 dt 1
b \600+fy) T L
—
C=T 085f, ba=Asfy
A
s /. )
0.85f. b

fp,C=a effective depth
While £,= 0.85 when fc’ < 28 MPa

_ A, balanced  As,,

Pp = bd bd
or As,= p,bd.... (3)

Substitute in eq. (2)
0.85f. ba=fyp, XbXxd
_ 0.85f; a 0.85f; (B;0)

Pb="Fyxd  fyxd
Cb from equation (1) then

/ ﬂ o ,_i—-i—% L C=085f"cab
st =AW ¥

o < NA
As.
D N T
— g _9_0_0_ | — bl s |
&,~f/Es
bw
_ 0858, ( 600\ (dt
Po = \600+fy) \ d

23
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While the nominal Moment Mn = C(d — z) = T(d — z) (Where 7 = %)

. Asfy

4T 0857 b

My = C(d- %) =T (d- %) e (5)
Or:

anAsz(d_g)

To get the usable design moment ¢Mn, the previously calculated Mn must be reduced by the capacity
reduction factor:

Afy
PMn = ®Asfy<d— 1-7fc'b>
while pbzl% or As=ppbd then :
oMn = ofy pbd  d - P22
n=0fyp 17 £b

@Mn = ofyp bd? (1 - 2%

Or @Mn =R, bd?

lead to

N _pfy _ Asfy
R"_Q”fy<1 1.7f’>’ T 085 b

(o}
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S _fy _
For more simlified, let m = 085 fo’ then:
1

R, = Opfy 1—5 pm| ......(8)
Then :

B 0.85 £/, 600 dt
P =5 \600+fy) \ @

_ ﬁ( 600 ) (dt
Po=" \Goorry) o) oo 9)

For one steel layer (

d

) =1
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Upper Limit of Steel Percentage

The upper limit ort he maximum steel percentage pmax, that can be used in a singly reinforced concrete
section in bending is based on then net tensile strain in the tension steel, the balanced steel ratio, and the
grade of steel used. The relationship between the steel percentage p in the section and the net tensile
strain ¢, ,1s as follows:

0.003 + ];_y
z = 5 — 0.003
b
For fy =420 MPa andj;—y = 0.002 then 1!,85 f'ﬁ
0.005 ’ c=0.003 c=0.003
A= e |5 0.003 ] — <
£ —
P o s 3| [e—C=085f"ca,b
These expressions are obtained by

referring to Figure shown. For a - ? M
balanced section, ©

ap Asp. fy pyfyd As.
= — =] —
P78, T 085f/bpB, 085f B ! l —|—o0—0—0-|— | ¥ __:"T Asfy

b &t gy~ fy/Es

Similarly for any steel Ratio p: , W O T

d & - >
B/ ] T
0.85 1, p1 cp, Pp

26
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Divide both sides by d to get:
c p ¢
—=— X— i nn (1
e (10)

From the triangles of the strain diagrams,

c 0.003

d_ 0003+ ¢

0.003
& = [—p—)|—0.003 .......(11)

d

Similarly:
Ch 0.003

4~ 0003 % fy/Es T (12)

Substitute in eq. (10)

c_ (P a P 0.003
~= <pb>(d) (pb) (0.003 +]];_y> N ¢ )

S

Substitute in eq. (11)

0.003 0.003 + Q

Es
g = —0.003 =
LT oc/d p

Pb 27

— 0.003
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fy
il e (14)
pp 0.003 + &
(0.003 + 7Ef—y>

p = > | py

0.003 + ¢,
For fy = 420 ,Es = 200 GPa,  fy/E.= 0.002
p _ 0.0051
pp, 0.003+¢

The limit for tension to control is et = 0.005 according to ACI.For & = 0.005, becomes:
p _0.0051 51

— = = = 0.6375
pp 0.008 8
p < 0.6375 py Tension Control
For design purpose £,=0.005 and :
P =< Pmaxand ¢ = 0.9 fy
0.003 + =
pmax 0.008

2

28

Subistitute p,( Eq.9) gives:

_3hi (%
Pmax =g =\ | e
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When p > p,a  section will be in transition state
then ¢ will be between 0.65 and 0.9

Previously :
¢Mn = Rubd? or Mn= R, bd?
pfy
R, = 1-—
u ¢pfy< 17 fé)
L,
0.85 f,
1

Then : R, = Q)pfy(l— Epm)

d
For one steel layer (d—) =1, fy =420 MPa, f,=28 MPa, ..... And m=17.65
t

Po = % (6060(1-0fy) (dc: )

0.85 600
Pb = 1765 <600 n 420) (1) = 0.0283
(0.003 + 7];—3’> ~
Pmax =\""goog _/Pb e .. (15) i -
(0.003 + %) o
N 0.008 p, = 0.6375p, = 0.6375 x 0.0283 = 0.01806

29
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1
Ru max — ®pmafo< 1- E Pmax m)

1
Ru . = 0.9 (0.01806) X 420 ( 1- - (0.01806 X 17.65))
Ru,, =574

That’s mean when p > p0 €:<0.005
and ACI cod 9.3.3.1 limited that should be not less than 0.004 in transition region

To keep enough ductility for beam when &, = 0.004

fy
p _ 0003 +5
pp  0.003 + ¢,

p _ 0.003+ 0.0021

o, 0.003 + 0.004
Then p =0.729p,

maxt

And @ calculated from
@t =065+ (g — 0.002) (250) and when £,0.004

30
0.817<0<0.9 and
0.004 <& <0.005

S
3 -—
gl

30
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pp=0.0283 , fy =420 MPa, f/=28 MPa, .....and m=17.65
p. . =0.729 *p,=0.0206

1
Rumax’t — Q)pmax’tfy( 1- E pmax'tm>

Rn .. ,=0.0206 x 420 (1—0.5 x0.0206 x 17.65) = 7.08

Ru = 0.812 x 7.08 = 5.75

max t —

This value is very close from Ru ., so increase the steel over the max ratio at the transition region
does not increased effectively section capacity so its preferable to add steel at compression zone instead
of overthe p_ .. +

31
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Example (1) : For the section shown below , calculate :

a- The balanced steel ratio.

b- The maximum reinforcement area allowed by ACI Code for a tension — controlled section and transition
region.

c- The position of the Neutral axis and the depth of the equivalent compressive stress block for the tension —
controlled section in b.

Given : f; =28 MPa, fy =420 MPa, 0.85f'c
Solution __ |
ﬁl 600 dt i | i i < %
B ) ) 701 T B
“ -
OE __ﬂ__ﬁ;__‘_____ 3
B,=0.85 for f/ <28 Mpa S 9 _
d. =d dt 1 A
g @ =Rt — S. L T=
d l— 1600 S 5T ASfy
fy 420
m = = = 17.65
0.85f  0.85 x 28 .
_ 085 (000 )y 0283 T
Pb = 1765\600 +420) 7 ~ .

Ay, = p, X b xd=0.0283 x 650 X400 = 7358 mm?
32
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b) &=0.005 for tension control

(0'003 i %) <0'003 + 204020000>
. _ x 0.0283 = 0.01804
P 0.008 /Pr 0.008

As .. = p..X b xd=0.018043 X 650 X 400 = 4690.4 mm?

For Transition region, &= 0.004
(0'003 + %) (0'003 + 204020000>
- - % 0.0283 = 0.021
o 0.007 /Pp 0.007 YAVAAER) = VL

ASmaxe = 0.0219 X 400 X 650 = 5694 mm?
250 250
Ot = 0.65 + (g, — 0.002) ( —— | = 0.65 + (0.004 — 0.002) -] = 0.817

¢) Block stress depth (7ension controlled)
C=T

0.85 f, X Qmax X b = Ag max [V - -
As.fy d - =
Amax = W E = Pmax M- d i = >

a,.. =001804 X 17.65 X 650 = 206.96mm

a 206.96

or cmax = lelax =<5 = 243.48 mm

33
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Block stress depth at Transition zone

As.fy d
q =

— bl _ d
085 f‘cl b d pmax,tm

= 0.0219 x 17.65 X 650 = 251.25mm

a max t —
Or:

a, ... 251.25
¢ = = = 295.6 mm

B, 0.85
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Example (2) : Determine the design moment strength and the position of the neutral axis of the rectangular
section shown below , if the reinforcement used is 40 25 mm , Given : f’c = 28 Mpa, fy =420 Mpa,

Solution:

(0858
g
25 2 3l
As =40 25mm = 4 x 25% X i 1960 mm S / o ® <L (C=085f'cbey
JAs_ 1960 oo LA Ve — W]
P~ bd ~ 300x540 | - = I R
3 i °
P < Prax = (0.018040 from Exa.1) OK As,
Tension Control A e }T=é§£)’_
-~ 0=0.9
C=T L300

085f, XxXaxb=Asfy
0.85 % 28 a x 300 = 1960 x 420
a=115.29mm  Or a = pm.d=0.012098 X 17.65 X 540 = 115.29 mm

_a 11529
=5 085 .64mm

(B=0.85 for f; <=28 Mpa)

dt = d (one layer)
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d—C 540 — 135.64

X &£ = % 0.003 = 0.00894 > 0.005 OK
& 135.64

Iension failure so ¢=0.9

OMn =Mu=0@T (d—%)=®Asfy (d—g)

115.29
= 0.9 x 1960 x 420 x (540 -— ) = 357.37 x 10N.mm = 357.37 KN.m
Example (3) : Repeat Example (2) Using As = 4@ 32 mm (HW)
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Lower limit or Minimum Percentage of Steel
If the factored moment applied on a beam is very small and the dimensions of the section are specified (as is

sometimes required architecturally) and are larger than needed to resist the factored moment , the calculation
may show that very small or no steel reinforcement is required. In this case, the maximum tensile stress due
to bending moment may be equal to or less than the modulus of rupture of concrete fr. If no reinforcement is
provided, sudden failure will be expected when the first crack occurs, thus giving now warning. The ACI
Code, Section 9.6.1, specifies a minimum steel area, As

min °

A 0.25 C d><—1')b d h '=31M
S i = bw.d > w.d.... ... .whenf, = pa
fy fy ¢

= {(—1 > F < 31 Mp
D min TR 2o T Ol | a
Iy i

0.25 fc ey
min — e e e WEN > _ =
R o
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Example (3) : A 2.5 m Span cantilever beam has a rectangular section and reinforced as shown below ,
The beam carries a dead load , including its self weight of 22 KN/m and a live load of 13 KN/m , using
f:=28 MPa, fy = 420 MPa. Check if the beam is safe to carry above load.

400mm

—‘— O O O ‘
As =3¢ 22 mm
! !
200

Solution:

1- External Load

ANNNNNNNN\N

L=25m

T

Wu=12D.L+ 1.6 L.L= 12 X 22+ 1.6 X 13 = 472KN/m

_ Wul?  47.2 x 2.52

N
2

2

2- Check &  As 022= 380 mm?

As.fy  3x380 x420

a=

~ 085f/b 0.850 x 28 x 200

a
c=——=118.35mm

0.85

= 147.5 KN.m

= 100.6 mm

S
3 -—
gl
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d, = d = 400 mm, ¢$=0.9

B dt — c
& = . &
(400 —118.35
gt ==

118.35

Or check
As 3 X 380

P =34 ~ 200 x 400

) x 0.003 = 0.00714 > 0.005 (&,)

= 0.01425 < p,, . = 0.01804

3- calculate :

OMn = QAs fy (d — E)

2
OMn = 0.9 X 3 x 380 X 420 X (400 — %) = 150.69KN.m

Other Solution
p=0.01425<p,, = 0.01804
420
v = 17.65
0.85f, 0.85x 28

1
R = pfy (1—Epm> - =
= 0.01425 x 420 (1 — 0.5 X 0.01425 x 17.65) = 5.23 N/mmz_i' e \

®Mn = @R b d?
= 0.9 X 5.23 x 200 X 4002 = 150.69 KN.m

m =
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Example (4) : A simply supported beam have a span of 6 m . If the cross section is shown below , f/=21 MPa, fy = 420
MPa determine the allowable uninform load live load on the beam assuming the dead load is due to self weight of the beam ,
given b= 300 mm, h= 500 and reinforced with 5@ 20 mm ( 1570 mm?2).

Solution |

Find the centroid of steel area
RS 50( Asb) + 2 x 75(Asb) As 56 20 mm
y — —

SX(ASb) ] ! o 9 Q L 6m _
-— | 0o 0 O s I 1

¥
i

d, = h — 50 = 500 — 50 = 450mm

300
d=h—-y" =500—-60=440 mm - ™
CB1[ 600 \[dt
Po =\ 600 + )\ d
Sy %20 353 g =085 (fi< 28 MP
M= 085f 085x21 Pr=085(f 2 O O
- -
085 (600 450\ _ oo O ~ | O |
Pb = 17.65\600 + 420/ \440) ~ > 2

0.003 + Iy
pmax =

ES) 0, = 0.6375 p, = 0.01385

0.003 + €t 40
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_(As\ 2 (231 N _ 01189 < k (6=09
P=\ba) " \300 x 240) = Prax Ok (0=09)

= = 0.003 < p=0.01189 OK

Pmin < P < Pmax

®Mn = @R b d?

R =pfy (1 —%pm)

= 0.01189 x 420 (1 — % X 0.01189 x 23.53) = 4.295 MPa

OMn = 0.9 X 4.295 x 300 X 4402 = 224.52 KN.m

Self weight of beam = 0.3 X 0.5%X1X24=3.6KN/m

3.6 X 62
Mp, = ~—— =162 KN.m

Mu= 12MDL + 1.6 MLL

22452 =12x162+1.6x M, = 128.175
W, x 62

&
M, = 128175 = —— |

W,, = 2848 KN/m .
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H.W

Example (5) : Check the design Adequacy of section below, factored moment Mu= 50 kN.m
, using, f/=25 MPa, fy =280 MPa
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Example (6) :Determine the design moment strength of section shown below , Given f’c=28 mPa and fy=420
MPa and check the specification of the section according to ACI Code.

Solution:
52

As =3 X nT = 1470 mm?

_ As _ As
2 effective area  bd — 150 x 100

AS | 75 150 | TS

~ 300 x 500 — 150 x 100 |
Effective area = 300 x 500 — 100 X 150 = 135000 mm? : ; —

= 170 501089 8 —:"I B
P = 135000 Y / S
pbzﬁl S0 @ Vs ///. L FTS = 5

m \ 600+ fy/)\ d E

dt = d=500 mm 2| 8

_ VPSR | KL = 17.65 i
M= 085fc 085 x 28

0.85 600 5 As 3 925 &
— x 17.65 = 0.02 ST O
Pb = 1765 (600 + 420> 65 =0.0283 t 3
i (0-005ggealie80ilD x 0.0283 = 0.018041 300mm

Prmax 0.003 + 0.005 ' - - "
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: 1.4
( ) = (ﬁ) = 0.00333 (where f'c < 31MPa
i = 0.00333 < p =0.01089 < p,,,, = 0.01804 y” 13 g 150 * 13
Tension Controlled © = 0.9 NN
Assume stress block depth = a = 100 mm 2 , ’%I B
Compressionarea A, = a X b — 100 X 150 ZV /// ) §
C=T 7
0.85fcAc = Asfy E o
]
_(1470x420\ o A ¥
c~\085%x28 )~ i
A.=axb—100x 150 = a x 300 — 150 x 100 : A;4<I%5 .
a = 136.47mm > 100mm LR
N\
300 x 136.47 X (133'47) — 150 x 100 x (@) 300mm |
y' = = 78.78 mm /

300 x 136.47 — 150 x 100
The Moment Arm between C and T is :

d—y' =500—78.78 = 421.22 mm

OMn = @Asfy (d —y’)
= 0.9 x (1470 X 420 X (500 — 78.78) = 234.06 KN.m
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Rectangular section with compression
reinforcement (Double Reinforced section )

S
-. ‘
S




Introduction

In concrete sections proportioned to resist the bending moments resulting from external loading on a structural
member, the internal moment is equal to or greater than the external moment, but a concrete section of a given width
and effective depth has a minimum capacity when g, 1s used. If the external factored moment is greater than the
design moment strength, more compressive and tensile reinforcement must be added.

Compression reinforcement is used when a section is limited to specific dimensions due to architectural reasons,
such as a need for limited headroom in multistory buildings. Another advantage of compression reinforcement is that
long-time deflection is reduced. A third use of bars in the compression zone is to hold stirrups, which are used to
resist shear forces.

Two cases of doubly reinforced concrete sections will be considered, depending on whether compression steel yields
or does not yield.
1- When Compression Steel Yields

Internal moment can be divided into two moments, as shown in Fig. below. Let Mu, be the moment produced
by the concrete compressive force and an equivalent tension force in steel, As,, acting as a basic section.
Then Mu, is the additional moment produced by the compressive force in compression steel A s’ and the
tension force in the additional tensile steel, As,, acting as a steel section.

The moment M, is that of a singly reinforced concrete basic section,
T,=Cc
As.fy =085f/ ba

s As fy 3
085f. b -

OMn = QAsfy (d — g)
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l

/

58 1 — L G g
/ 2 e 7 -~

(ASTTAIAT S EA i—_NA— N

3
=]
As.
- 000+ — — — — ————>T=As.fy
b | l
Il
|0.85 f'c
- I A A | S - AP Wy Wy
° . ° Gl T = S| Ce=085fcab S~ [ =
A N.A =
-
3 A
=
" ==
e 000]— — — — - 5. Ti=As, fy o—+——>T-As, fy
b
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oM, = As,fy(d —3)
OM, = PAs,fy(d — d')

Prof. Dr. Haleem K. Hussain

PL="= less or equal p ... for singlreinforcement section under tension control

And

fs' = fy then

OM, = BAs,fy(d — d")
Or:
T,=Cs

As,.fy = As'fy As' = As,

OMn = QMn ,+ QMn,

As = As, + As, As, = As — As'
——

8 Asify _ (As — As"fy
0.85f'ch  0.85f'ch

oMn = 0 [(4s - As') x fy (d — g) +As'fy(d - d)]

_,_ _(0003+fy/Es
pl_p P = pmax_ 0003+€t b

e .

48
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and when p ,=p —p' < p,... ; then the failure case will be at transiton region
And @ will be less than 0.9 for M,; and @ = 0.9 for M, , so:

¢Mn=[wﬂs—Ay)xnyf—%)+am%7w(d—dq]

Noted that: (As — As)<p,...: 0 d
In the compression zone, the force in the compression steel is Cs = A’s(fy — 0.85f'c) ,taking into account
the area of concrete displaced by A's. In this case,

=
As fy =C. + C;
As fy =085f/ ab+ As'(fy — 0.85 )
As fy —As'fy +0.85 f/As' =085 f ab where C. = As,fy = 0.85 f.a b (for the basic section)
Divided by (b d) fy :

p—p’<1—085£>=p where : p <<ﬂ)

T fy ! )

Therefore,

1 0.003 + fy/Es <= .
=p—p'(1-0852)< =
pl :0 ,0 ( fy = pmax - 1:-0008

-

This Eq. 1s more accurate than previous Eq.it is quite practical to use both equations to check the condition
for maximum steel ratio in rectangular sections when compression steel yields. 49
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The maximum total tensile steel ratio, p ,that can be used in a rectangular section when compression steel

yields is as follows:
!

M ax p — p max +p
where p max 1s maximum tensile steel ratio for the basic singly reinforced tension controlled concrete
section. This means that maximum total tensile steel area that can be used in a rectangular section when

compression steel yield is as follows:
Max As =bd (P + £')

In the preceding equations, it is assumed that compression steel yields. To investigate this condition, refer
to the strain diagram in Fig. Below. If compression steel yields, then :

Eg = & = —
C 0.003 600
600 — fy

" 0.003 — fy

50
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ec—=0.003
o o Es /

As'. &) /

gs > fy/Es

d!

d
2
>

as known:
As, fy =085f'cab
As,=As—As and p,=p—p’

51
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(As—As")fy =0.85f,/ab devided by (bd)
(p—pDfy=085f ab

, f
p—p = 0.855(3)

600 ,
L e 2\ /(d 600
s ’)’1(5)(?)(—600—@)

L _Bid (600
P=P ="0d \600— fy

where : ‘ . =
7 : : : . . mdsr  (As-4sh)
p — p 1is the steel ratio for the single reinforced basic section = - B

-
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Example (7) : A rectangular beam section have a width of 300 mm, and an effective depth d = 570 mm
to centroid of tension steel . Tension steel consist of 6@ 28 mm in two layers. Compression
reinforcement consist of 20 22 mm, and d’ = 50 mm as shown below . Calculate the design moment
strength of the beam , Given /=28 MPa and fy = 420 MPa.

085 f'e
A " £c=0.003 .
r T;JI o 0 0 | I & / S cer — @ — Cs= As'f§
w02 ° o™ < RCc=0.85Tcab o~ |
E % » - = %
i) L N.A %l' .
o
o 6?)28 o
= = gy == . =
: A‘———%—e—o—tQT > T=As fy - —o——> T,=As,fy
(o)) o
300mm | |
.
o

53
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Solution : Check if the compression steel yields :

A <6 X 282 x %)
=(—=)= = 0.02158
P <bd) 300 X 570

As’ <2 X 222 X %)
=== = 0.00444
P (bd ) 300 X 570

1- Check
- (B1d’ 600
p—p =
md ) \600 — fy
fy 420

A1 M =085 ~ 0.85x 28
0.01714 > - Ch 600 = 0.01408

' —\17.65x570/\600 — 420/

Then: fs'=fy (0.K.)
2— Check p—p' < poox

_B1{ 600 \[dt\ 085 ( 600 600\ _ o o -
Po = T\ 600 + fy)\'d ) ~ 17.65\600 + 420/ \570) ~ " 7° O Pmax T

0.003 + LY 0.003 + oD 5> =
0. = Es o = 200000 | _ 637508 T
™ \0.003+ et/ "\ 0.003 + 0.005 | : a
p—p =0.01714 < p,,,,=0.0190
Tension Controlled -Section so: ¢ =0.9 54
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3- Calculate ¢ Mn
OMn = 0 [(As — As") % fy (d - g) +As'fy(d - d)]
As,fy  (As—As)fy (3690 —760) x 420

_ - - =172.35
“=085fch  085fch 0.85 x 28 x 300 mm
@Mn = 0.9 [(3690 —760) x 420 X (570 - %) +760 x 420 X (570 — 50)] = 685.3 kN.m
4- Another way to check the yield in compression steel £.=0.003
MO ot ! a &'
C_ﬁ1_ 085 .76 mm r\E w S
(o]
<o
es’ _c— d T
EC i C O
20276 =50 003 = 0.00226 > £, = 0.002 B e
& TV TR = =
5- Check ¢,
_ (%) 80020276 003 = 0.005877 > 0:005
A &= 720276 TS = s
6- Check The Maximum Tension steel Area for this section : Es

Max As = (p,,.. + p') bd = (0.0190 + 0.00444) x 300 x 570 = 4008 mmn?
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Rectangular section with compression
reinforcement (Double Reinforced section-II )

S
-. ‘
S
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Steel Compression Dose Not Yidd (f. < fy)

As was explained earlier, if the formula not checked,

(B 600
p—p = md ) \800=fy)

Then compression steel does not yield. This indicates that if p — p’ is greater than the value of the right-hand
side 1n above eq., So the solution can be done depend on static analysis . The stress in compression steel can
be calculated in two method :

1- From Internal Forces Balance

2- direct method

3- indirect method ( Iterative method)

2- direct method

Aa?—Ba—C=0

A=1,
| d( 600 )
=-m p——
fy
L
=—f(,m
fy ! P
a=1[B+\/BZ+4AC] and C=—
2 B4

59
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Then Stress can be calculated :

!

fs' =600 (c ) < fy

2- indirect method ( Iterative method)

claculate (a) value for double reinforced section ( DRRS):
PAs fy SEEE

0.85f'ch asstiic gl
find a and c=a/B;
f'si =600 (C_Cd’) < fy, Compare this value f'si with first one (f's)

If its not same then re-calculate (a) using f'si and continue until obtain approximately equal f's in
last two step. After obtain f's then can calculate the Cs and Cc

Cc=As fy—A'sfs' where: Cs =A's fs'

oMn = 9 [cc (d —%) +Cs(d—d)]

60
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Whenf's < fy
then the maximum steel area in tension zone for rectangular section can be found

IS
Max As = (pxbd+ A's —

fy
J 1 fs'
- (pmax+p fy)bd
max As fs’

< +p'—
bd - max p

fy

!

_ IS
(o—p fy)Spmax

0 mae- Maximum steel ratio for single beam section under tension controlled

_Asfy—A'sfs’
~ 0.85f'ch
And : OMn = @ [(Asfy — As'fs") (d - g) +.As'fs' (d —d")
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Example (8) : Determine the design moment strength of the section shown below , using f’c= 35 Mpa , fy =
420 Mpa. As = 60 32 mm (two layer )and A's = 3@ 25 mm.

SZO(IIU'? Orll d n £c=0.003
-Calculate p and p’ v L W - N &~
p= (AS> = O X8 02418 i 325, 5%—— . Gggﬂsmﬁ 9O Asfs
bd ] ~ 350 x 570 ol o | )
,_(As\_ 3x49%0 _ o % -sr T ¥
p_<bd)_350x570_0'00 368 4 3 g v
m = Iy = 14.12 06?)320 £y
I 0IG5] A JTa-Te-0 01 < ——— >T=As Y o> T=As fy
f1 = 0.8 for f’c =35 mPa % ‘:L
(1 600
-7 (5) @i=r) | s

— 0.02417 — 0.007368 > [28%6> |\ (600 \_ 016812 < 00215 oo T
e ' =\1212x570) "\600—420/) ~ iy (not chegeed)

fs'<fy

_B1( 600 \[dr\ 08 600 e
Po = T\ 600 + fy)\'d ) ~ 1412\ 600 + 420 570
>< 0. 0350;“0 0224

(0.003 + fy/Es) . (0 003 + 420/200000
pmax =i -

0.003 + et 0.003 + 0.005
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S0 <3 Tension controlled $=0.9
3- calculate @Mn (internal section analysis)
Cc=085f'cab a=£,XC=08C

Cc=0.85 x35 x(08C)x350=8330C N
Cs=A's(fs" —0.85f'c)

c—d’ c — 65
fs’=600< )=600( >
c c

c— 65
Therefore : (s = 1470 X (600 X ( . > — 0.85 x 35)

c — 65

C

T=T,+T,=(As;+A4s,)fy=As X fy =6 x 804 x 420 = 2026080 N
4- Internal Forces
T =Cc+Cs

c— 65 : .
2026082 = 8330 C + 882000 X ( - ) — 43732.5 ‘__\
S
2026080C = 8330C? + 882000 C — 65 x 882000 — 43732&

8330C2 — 1187812.5 C — 57330000 = 0

= 882000 ( ) — 43732.5

C=180.68 mm
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a:,leC:O.8><180.68

Or

2- Using Direct Method
Aa?— Ba—C=0

A=1,
. d( 600 )
=-m e —
* " Fy
Czﬂﬂlmdd’ '
F .
azz[B+\/B2+4AC]
1 600 , 600 ,\1% 600 . _a
a= E[(md(p—ﬁp)>+\/[md(p—ﬁp)] + 4 xl.OxF,Blmddp ], C_E

0.007368 :
* 0.007 + 4 %
420

600 0.007368 | | + [|14.12 570 | 0.02418 600
* * —
20 ' ' 420

. :
a ) and c¢=—=176.39mm
B4

N =

[(14.12 * 570 (0.02418 3

* 0.8 x 14.12 * 570 * 65 * 0.007368) ]
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Or Using
3-Indirect Method ( iterative method ) both method dose not subtract the term ( 0.85 f’¢)
-Calculate (a)
As fy —A's fs'
— h / —
0.85f'ch where fs° = [y

_ 4824 x 420 — 1470 x 420 — 13599
=T 085 x35x350 e

_a 13529 e
¥ 21 I

s = 600 c—d' ¢ 169.11 — 65 e
/Sy I 169.11 ) 0P

_ 4824 X420~ 1470x 36933
“ 0.85 X 35 x 350 - resmmm

_a _l24
“Tp1” os _ormm

s = 600 S2L) = 600 (LB2E=65) _ 31 yp
el c )~ 178.04 ) ¢

_ 4824 x 420 — 1470 x 381

9 085 x35x350 L4079 mm B
_a _14079" -
‘=B " o0 _°mm % »

-

!

c—d 176 — 65 ;
f's = 600 - = 600 T804 ) = 378.4 MPa almost last two value are equal
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4824 X 420 — 1470 x 378

085 x35x350  _ [l.elmm
_a_wwm2a_
‘T T o0g _o0mm

5- Calculate fs’, Cc and Cs
s = 600 (=) = 600 (1762 = 65\ _ 3791 mp
B c ) VoS

Cc=0.85x 35 x (0.8C) %350 =8330C =8330x 176.5 = 1470245 N
Cs=A's (fs'" —0.85f'c) =1470(379.1 — 0.85 x 35) = 513544 N

6- Calculate Q Mn

141.21
2

66

oMn = ¢ |cc(d —3) + Cs(d — d")| = 0.9]1470245 (570 — *222) + 513544( 570 — 65))]

= 894222 065 N.m
= 894.22 KN.m
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7- Check that p — p’ % = (Do

37
0.02418 — 0.007368 X <

20 ) = 0.01753 < p,,,, = 0.02236 (0.K.)

The maximum total tension steel can be used in this is calculated by :

Max A < + ’fS,>bd
ax AS = i &
P o'

37
= <0.02236 + 0.007368 X

X X = 2
420) 350 X 570 = 5787 mm

8- Let Check et as follow:
C = 176.5mm , d, = 600 mm

dt —c 600 — 176.5 : . E
g, = (———] %0003 = ——-——=100072>0.005 -0.K tension co@%
. ‘i' .
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Thank You........
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ANALYSIS OF T-AND I-SECTIONS

It is normal to cast concrete slabs and beams together, producing a monolithic structure. Slabs have
smaller thicknesses than beams. Under bending stresses, those parts of the slab on either side of the
beam will be subjected to compressive stresses, depending on the position of these parts relative to
the top fibers and relative to their distances from the beam. The part of the slab acting with the beam
is called the flange, and it is indicated in Fig. below a by area b*h;. The rest of the section confining
the area (h—hy) b,, is called the stem, or web.

In an I-section there are two flanges, a compression flange, which is actually effective, and a tension
flange, which is ineffective because it lies below the neutral axis and is thus neglected completely.
Therefore, the analysis and design of an I-beam is similar to that of a T-beam.

Floor systems with slabs and
beams are placed in monolithic
pour.
Slab acts as a top flange to the
beam;

1- T-beams

2- Inverted L (Spandrel) Beams.
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Positive and Negative Moment Regions in a T-beam

) I cks
Web or stem Cra
A

(a) Deflected beam.

b b
I T
| o-r01.. |£ii¢/A/ii]
Compression zone Tension reinforcement —_
T—
— b -

(b) Section A-A (c) Section B-B (d) Section A-A

(rectangular (negative moment). (T-shaped

compression zone). compression zone).
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If the neutral axis falls within the slab depth

analyze the beam as a rectangular beam,
otherwise as a T-beam.
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(@)

= —b o {
i T ¢
‘ )
[
h g
A,
¥ —"——1"'-".'-'-
1, —i

_ o= ‘bw
A, {
o & - I
t
— S o J——
(b)

73




Prof. Dr. Haleem K. Hussain

Effective width (b,)

b, 1s width that is stressed uniformly to give the same compression force actually

developed in compression zone of width b,

4—bw+
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I-From ACI 318, 2014 Section 6.3.2.1
T Beam Flange:
be < x

€=13

be <16 h, + bw
be < b ( clear distance to next web)

2-From ACI 318 2014 Section 6.3.2.1

Inverted L Shape Flange
L
e
be < 17 + bw
be < 6 hy + bw
be < b = bw + 0.5 X ( clear distance to next web)

3-From ACI 318 2014 Section 6.3.2.2

Isolated T-Beams
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The analysis of a T-section is similar to that of a doubly reinforced concrete section, considering an area of
concrete (be—bw)*t as equivalent to the compression steel area A's. The analysis is divided into two parts, as
shown in Fig. below.

1. A singly reinforced rectangular basic section , bw *d ,and steel reinforcement As,. The compressive
force, C1, is equal to 0.85f'c a bw, the tensile force, T, is equal to As,fy, and the moment arm is equal to
(d—a/2).

2. A section that consists of the concrete over hanging flange sides 2x[(be—bw) h¢|/2 developing the
additional compressive force (when multiplied by 0.85f'c) and a moment arm equal to d—hf/2. If A 1s the
area of tension steel that will develop a force equal to the compressive strength of the overhanging
flanges, then

i___ be |
B (b-bw)/ 2 bbwy2  BBIY
I
g
p— L \
Toss frcab =] Grossfemmmie
o ™

d-hf/2

¢ |

» T=As; fy

»T=As fy
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As; fy = 0.85f"'c(be — bw)h,

_ 0.85f"c hf (be — bw)

S
4 fy

The total steel used in the T-section As is equal to As, + Asf, or:

As; = As — As;

The T-section is in equilibrium, so C; =T; ,C, =T, ,andC=C; + C,and T =T, + T5.
Considering equation C; = T; for the basic section, then

As, fy =0.85f'cab,, or (As— Asf)fy = 0.85f'cab,, therefore,

il (As — Asg) fy

0.85f'c bw
Note that bw is used to calculate a. The factored moment capacity of the section is the sum of the two

moments Mu, and Mu,:
®Mn = Mu, + Mu,

Mu, = 04s, fy (d - =) = 0(As — Asf)fy(d —3)

As, = (As — Asf) and
i (As — ASf) fy
0.85f'c bw

hy
Mu, = QAsf fy (d — 7)

-]
L
b =
-

h
0 Mn = 0(As — AsP)fy(d —3) + Asf fy (d ==
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Considering the web section bw X d, the net tensile strain (NTS), €t, can be calculated from a, ¢, and dt as
follows:

If c = —and d; = h —62.5, then ¢ = 0.003(d; — ¢)/c . For tension-controlled section in the web, et >
al

0.005. The design moment strength of a T-section or I- section can be calculated from the preceding equation
above .It is necessary to check the following:

1.The total tension steel ratio relative to the web effective area is equal to or greater than p min:

_ As -
pw - bW d = pmin
0.25./fc 14
Pmin = =
fy fy

2. Also, check that the NTS is equal to or greater than 0.005 for tension-controlled sections.

3.The maximum tension steel (Max As) in a T-section must be equal to or greater than the steel ratio used, As,
for tension-controlled sections, with @ =0.9.

Max As= As; (Flange) + p,,,. (bw d) (web) _ .
1 -~ \
Max As = (—) [0.85f"c h(b — bw&' (b, d)

f y maxJ
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In steel ratios , relative to the web only, divide by bw d:

[ As - N Ay
pW - bwd — pmax bwd

Pw—Pf < Pmax (Web)

As

where p,,,. is the maximum steel ratio for the basic singly reinforced web section and p = m.
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Example (10) :A series of reinforced concrete beams spaced at , 2.15 m on centers have a simply supported span of 4.6 m.
The beams support a reinforced concrete floor slab 100 mm thick. The dimensions and reinforcement of the beams are

shown in Fig. below .Using f'c=21 MPa and fy=420 MPa , determine the design moment strength of a typical interior

beam. T .__—__!__—_ F —

>
46m

[ 2.15m | 2.15m |

i
]
]
L]

hf=100

As 3#25 T-Section
oCcoO 00

300
r—
&

S
&

| 250 | 1900 mm | 250 , 1900 mm | 250
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Solution

1.Determine the effective flange width be. The effective flange width is the smallest of:

b —L—4'6—1150
8—4—4— mm

be = 16 hy + bw = 16 X 100 + 250 = 1850 mm.

be = Center to center of adjacent slabs =2.15 m

Therefore be= 1150 mm

2.Check the depth of the stress block. If the section behaves as a rectangular one, then these stress block lies

within the flange. In this case, the width of beam used is equal to 1150 mm.

s fy _ 1470 x 420
~ 0.85f'cbe 0.85x 21 x 1150
therefore ,it is a rectangular section.

3.Check that:

a = 30.01 < hf = 100mm

g A > —1'4—1'4—00033 'c < 31.MP
pw_bwd—pmln_fy_420_ D fOT'fC ‘a’
1470

= 0.0148 > p;, = 0.0033

-]
L
b =
-

Pw = 350 x 400
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30.01

4.Check st : a = 30.01mm.,C = o8s = 3531mm, d,=d=400mm.
_demc  _A00—3531 003 = 0.03098 > 0.005 Ok
=T % T T 3531 wus =T '

Tension Controlled and  ¢=0.9
5. Calculate @ Mn

a 30.01
@ Mn = @Asfy (d - E) = 0.9 X 1470 X 420 (400 — (T) = 213.93 KN.m

6.Check that As used is less than or equal to Max As
Max As = Asg + p,,q,. (b, d)

0.85f'c h;(be — bw)) -
fy + pmax( w )

_By(_600 \(d) 085 ( 600 \ . oo
Po = \600 + fy/\d) ~ 2353\600+420/" 7 =

0.003 + LY 0.003 + =320 __
. Es |, — 200000 | » 02125 ;
e 0.008 b 0.008 ' =
0.85 X 21 x 100(1150 — 250) ~
Max As = + 0.01354 (250 x% 5179 mm? > As (use

MaxAs = (

420
= 1470 mm? O.K.

-
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Example (11) :Calculate the design Moment strength of T- Section Shown below using f'c=24 MPa and

fy=420 MPa , determine the design moment strength of a typical interior beam.

b=915 mm

- B=—
IQ.BS f‘n| 85 f'c
) / . e e
jl ‘ // § Fy 4 F4 E_r l 5%! g
- i r:a, = u
P : & / / %J 0 « CH085fcab ga; 0.85 f'c (b-bw) hf
/s, —_—— = — -+ — — —
E E b it i ._. ________ ' -
[
% @ = = = = N‘IA.— - = _fg %I
o o
6430
s | o 00
® &0 —— - — A — T1=A51'fy > TfAs‘-fy

250mm el
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Solution
1- Calculate a:

_ Asfy

~ 0.85f'c be

As=0 30 = 706 mm?
6 x 706 X 420

4= 0.85x% 24 %915
Sincea > hf ,itisa T — Section analysis

a

=9531mm > hf = 80 mm

2- Find As;
o 0.85f"c hy (be — bw) 3 0.85 X 24 x 80 X (915 — 250) e
fy 420
As; = As — As; = 4236 — 2584 = 1652 mm?
LA fy _ 1652x420 136.05
0.85f'c bw  0.85 X 24 x 250
_a 136.05
c= ,3_1 =085 160.06 mm
3- Check et <~ .
d, = 460 mm -~ t_\
d,—c 460 — 160.06 "
3= %X 0.003 = 16006 X 0.003 = 0.005623 > 0& 0K

?=0.9 Tension Failure
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4- Check As min.
As .. =p., bwd = %bw d where f'c <31 MPa

As .. = 0.0033 x 250 X 430 = 357.98 mm?
Max As= Ayt Py, (b, d)

Sy 220 69
M= 085fc 085x24 “

= 0.6375 Br(__600 Y _ 0.6375 x 252 600 *09) 001651
Pmax Po = 1 \600 + fy 2059\ 600 + 420/ \430) ~

Max As= 2584 + 0.01651 X 250 X 430=4364.3 mm?
As = 4236mm? < 4364.3 mm? 0.K

5. Calculate @ Mn

h
@Mn=0 [(AS — Asf)fy (d - %) + Asf fy (d — ?f)]

.05 0
) + 2584 x 420(4 7 606.97

88
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Dimensions Of Isolated T-shaped Sections

In some cases, isolated beams with the shape of a T-section are used in which additional compression area is
provided to increase the compression force capacity of sections. These sections are commonly used as
prefabricated units. The ACI Code, Section 6.3.2.2, specifies the size of isolated T-shaped sections as follows:
1.Flange thickness, h;, shall be equal to or greater than one-half of the width of the web ,b,,,.

2.Total Flange width b shall be equal to or less than four times the width of the web, b,,,.

5
A \
!
o
b<4bw
hf > bw/2
! o o o
__bw_4
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Inverted L-shaped Sections

In slab beam girder Floors, the end beam is called a spandrel beam. This type of Floor has part of the slab on
one side of the beam and is cast monolithically with the beam. The section is un symmetrical under vertical
loading (Fig. shown below). The loads on slab S1 cause torsional moment uniformly distributed on the
spandrel beam B1. The over hanging Flange width (b- bw) of a beam with the Flange on one side only is
limited by the ACI Code, Section 6.3.2.1, to the smallest of the following:

CL CL
| |
I I
"
I i I i
A | b A
- i I I
= Beam ; | Beam ; | Beam
| |Bl
: | Slab ' '
Slab S1
L. | i | il
| 4im A 4m .
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1 be == be = — = 500 mm ( controlled)
12 12

2. be=6><hf+bw. be = 6 x 150 + 300 = 1200 mm

3700

3 be =D be=T+300=2150mm
b 3 |
= - i
=
o) | = I
C_?-lr ‘ \ - i iz A et in s
WL ADB | ‘pandrel beam Aos A =0C00L011 %s
1300, 3700 mm .300. 3700 mm .300
b be=500 mm
I
ﬂ 3
o bbw g g
‘ e o o ® @0 0

bw 1| §UO mim 91
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Example (12) : Calculate the design moment strength of the precast concrete section shown below
using f'c= 28 MPa and fy=420 MPa .

Solution:
1.The section behaves as a rectangular section with b=350 mm and d = 610 — 62.5 = 547.5mm.

Note that: the width b is that of the section on the compression side.
2.Check thatp = As/bd =5 X 615/(350 x 547.5) = 0.01605

_By(_600 \(d) 085 ( 600 \ . oo,
Po = n\600+ fy/\d) ~“1765\600 +420/ " ~

0.003 + 7];—3’ 0.003 + %
Dy = 1o, = x 0.02834 = 0.01807 > p = 0.01605

0.008 0.008
14 14 — 390
Pmin 7 = 750 — Y-
420 < I
. fy | | =8 i
So its tension-controlled sections. A
Therefore $=0.9. Also p > p, .. min=0.00333.Therefore, p is within the limits & — e 4] g
&
of a tension-controlled section. =
3.Calculatea (a) R
_ Asfy  5x615x420 (EE G - o As 5628 mm
= 085fch 085%x28x350 oo ' 5 ,
a 155.
(Z)Mn=(Z)Asfy(d—§) =0.9><5><615><420><<547.5— - 500 mm

= 546.28 kN.m 92
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Thank You........




